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Electron–phonon interactions at the topological
edge states in single bilayer Bi(111)†

Enamul Haque, *a,b Yuefeng Yin*a,b and Nikhil V. Medhekar *a,b

An intriguing feature of two-dimensional topological insulators is the topologically protected electronic

edge state, which allows one-way carrier transport without backscattering. Although this feature has

strong potential applications in lossless electronics, the ideal behavior of the edge states may be fragile

due to electron–phonon (e–ph) interactions at room temperatures. Using density functional perturbation

theory calculations for single bilayer Bi(111) as a prototypical 2D topological insulator, we show that e–ph

scattering can be a significant source of backscattering at the topological edge states. We also show that

e–ph interactions strongly correlate to the dispersions of the electronic edge states. In particular, the e–

ph interactions increase significantly with temperature and are much stronger at the nonlinearly dispersed

edge states of native edges compared to the linearly dispersed edge states of passivated edges, causing a

significant energy dissipation in the temperature range of 200–400 K. Overall, we argue that the e–ph

interactions can be a crucial factor at finite temperatures in controlling the electronic transport at the

topologically protected edge states.

Introduction

Two-dimensional (2D) topological insulators (TIs) exhibit
various novel phenomena such as topologically protected con-
ducting edge states embedded in an insulating bandgap,2,3

quantum spin Hall (QSH) effect,2,4 and superconductivity.5,6

These properties have made 2D TIs an active area of research in
condensed matter physics and materials science due to their
potential applications in spintronics,7–9 quantum computing,10

and low-energy electronics.11,12 From a practical viewpoint, inter-
actions between electrons and phonons (e–ph interactions) play a
critical role in the transport properties of metals,13 semi-
conductors,14 and 3D TIs,15 and are expected to play a similar role
in the transport properties of 2D TIs. Although the “spin-momen-
tum locking”12 enhances the spin current induced via the QSH
effect, in practice the QSH effect often deviates from the ideal be-
havior due to e–ph scattering inherent at the edges at finite temp-
eratures. For example, it has been suggested that both off-state
and on-state current in a field-effect-transistor based on a 2D TI
can exhibit significant uncertainties due to e–ph scattering.16 A

fundamental understanding of e–ph interactions at the edges of
2D TIs is critical for resolving this issue. However, current under-
standing of the e–ph interactions is limited only to the surface
states of 3D TIs and insulating surfaces of 2D TIs.1,17–21

In the case of 3D TIs, experimental observations and
theoretical calculations have shown that the e–ph interactions
play a critical role in modifying and manipulating the topologi-
cally protected electronic surface states as well as the electronic
transport.18,22–24 Notably, the e–ph interactions can transform
the topological phase into a normal insulating phase via elec-
tronic band renormalization.25,26 Compared to the 3D TIs, the
reduced dimensionality of 2D TIs can significantly modify
vibrational states and enhance e–ph interactions in ultrathin
2D films. This has been demonstrated in a recent study which
showed that ultrathin Bi(111) exhibits much stronger e–ph
interactions compared to its bulk counterpart.21 Analogously,
it can be expected that e–ph interactions can be significantly
enhanced at topologically protected 1D edges of 2D TIs. Also,
the QSH in the 1D edge state is typically observed at low temp-
eratures (e.g., few mK for HgTe and InAs/GaSb quantum
wells,4,27 and up to 100 K for WTe2 monolayer28), where e–ph
interactions have minimal impact. Experiments on WTe2
monolayers show that when the temperature is above 100 K,
the e–ph interactions become a dominant effect in controlling
topological semi-metallic to metallic phase transitions com-
pared to the presence of defects and impurities even for very
high purity samples.29 Although the topology protects the (1D)
edge state of a 2D TI from backscattering at low temperatures,
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whether it still protects the edge states from the backscattering
around room temperature remains unclear.

Here we use single bilayer Bi(111) (SBB) as a representative
example of 2D TIs to investigate the impact of e–ph inter-
actions at the topological edge states. SBB is a pure elemental
2D TI with robust edge states induced by a strong intrinsic
spin–orbit coupling effect.30,31 Using first principles density
functional perturbation theory calculations, we show that e–ph
scattering at the edge states of SBB can be an important source
of backscattering and charge carrier decay at room tempera-
tures. We also show that e–ph interactions strongly correlate
with the character of the electronic band topology of 2D TIs. In
particular, the e–ph scattering increases with temperature
causing a subsequent dissipation of energy, which critically
depends on the character of the electronic band topology. This
study provides a direct quantification of the impact of the e–

ph interactions on electronic transport at the topological edge
states and suggests a potential way to minimize the impact of
e–ph interactions on the carrier transport towards a dissipa-
tion-less transport at room temperature.

Results and discussion

We first investigate electronic and phononic structure, e–ph
scattering and its impact on the electronic dispersions in SBB,
as summarized in Fig. 1. Bismuth is a heavy element with a
strong intrinsic spin–orbit coupling (SOC), which splits triply
degenerate Bi 6p orbital into p1/2 and p3/2 orbitals in a fully
relativistic sense (Fig. 1a). The 6p orbital leads to six doubly
degenerate electronic bands in the vicinity of Fermi level
(Fig. 1b). From the comparison of wavefunction parity of SBB

Fig. 1 Electronic and phononic structure, e–ph scattering and its impact on the electronic dispersions in single bilayer Bi(111). (a) Crystal structure
of single bilayer Bi(111), with two Bi atoms per unit cell (lattice parameter 4.29 Å), along with its corresponding 2D Brillouin zone with high symmetry
points. Also shown is the energy level splitting of triply degenerate p-orbital due to the fully relativistic spin–orbit coupling effect. Here, L, S, j, l, and
s is the orbital angular momentum, spin angular momentum, total angular momentum, azimuthal quantum number and spin quantum number,
respectively. (b) Fully relativistic electronic band structure and projected density of states at 0 K. Red and blue circles indicate the contributions of
p1/2 and p3/2 states, respectively; + and − symbols indicate the parity of the corresponding bands. (c) Low energy phonon dispersions, calculated
with spin–orbit coupling effect. The red spheres correspond to the experimental data (measured at 123 K for M̅– Γ̄ and at 103 K for Γ̄ –K̅) of multi-
layered Bi(111) obtained from ref. 1 as a reference. (d) Energy band resolved e–ph scattering matrix elements. (e and f) Electronic band structure cal-
culated with density functional perturbation theory, taking into account e–ph scattering at 0 K and at 300 K. Eg denotes the band gap. In (b–f ), the
Fermi level is set to zero.
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with and without SOC (Fig. S1†), it can be observed that the
band inversion occurs (Fig. 1b) at the center of Brillouin zone
(Fig. 1a). The p3/2 states predominantly contribute to this band
inversion, as seen from the projected band structure and
density of states (Fig. 1b). Compared to the six doubly degener-
ate electronic bands, the SBB has six doubly degenerate
phonon modes with three acoustic and three optical branches
with no imaginary frequencies, confirming its dynamical stabi-
lity (Fig. 1c). The calculated phonon dispersions are in excel-
lent agreement with the available theoretical data of SBB.19–21

As the experimental data on phonons in SBB is not yet avail-
able, we have plotted the experimental data (red circles in
Fig. 1c) of multi-bilayers Bi(111) for a qualitative comparison.1

Experiments on 40 nm thick few bilayers Bi(111) at 300 K
report three optical phonons, where first two are doubly degen-
erate Eg modes at 8.5–8.6 meV and the third optical phonon
is A1g mode at the zone center at 11.6–11.9 meV.32,33

Furthermore, these modes are blue-shifted with decreasing
thickness and are qualitatively consistent with our calculated
values of 11.9 and 15.2 meV for SBB, respectively.

To understand e–ph interactions in SBB, we first calculated
band-resolved electron–phonon scattering matrix via density
functional perturbation theory using the equation,

gmn;vðk;qÞ ¼ ℏ
2Mωqv

� �1=2

ψmkþq @qvVSCF
�� ��ψnk

D E
; ð1Þ

where ψnk is the nth Kohn–Sham wavefunction at wavevector k
with energy eigenvalue εnk, ωqv is the vth phonon frequency at
phonon wavevector q, and ∂qvVSCF is the first order variation of
Kohn–Sham self-consistent potential associated with the
phonon wavevector q.34,35 The calculated values of the elec-
tron–phonon scattering matrix elements for SBB (greater than
500 meV, see Fig. 1d) illustrate that these phonon modes
strongly interact with the electrons of p1/2 and p3/2 states. The
e–ph interactions with matrix element values greater than
100 meV are generally considered to be strong.36,37 As a com-
parison, the e–ph matrix element values in the range of
200–400 meV have been reported for graphene,37 >600 meV for
β-SnSe36. In particular, the topmost valence band has a stron-
ger e–ph scattering than bottommost conduction band. These
results suggest that the e–ph scattering can potentially modify
the electronic band structure of SBB at finite temperatures. To
investigate this further, we calculated electronic band struc-
tures at 0 K and 300 K, considering only e–ph scattering and
neglecting any thermal expansion of the lattice. The electronic
dispersion (see Fig. 1e) at 0 K is same as that of the normal
DFT band structure with a band gap of 0.5 eV (Fig. 1b). As can
be seen from Fig. 1f, the energy band dispersion at room
temperature (300 K) is altered due to a strong electron–phonon
scattering. In particular, the band spectrum is broadened over
the momentum space and the VBM is pushed upward, redu-
cing the bandgap by ∼100 meV. These observations motivate
us to explore whether the e–ph interactions can modify the
edge bands in SBB and thereby impact the carrier transport at
room temperatures. We also anticipate from these obser-

vations that the e–ph interactions in SBB cannot typically
induce any structural phase transitions due to covalent nature
of SBB, and furthermore, the structural stability of Bi(111) was
experimentally verified up to 500 K.38 It has been shown that
in a covalent insulator (e.g., SBB considered here), the per-
turbed energy of all phonons remains positive, i.e., e–ph inter-
actions are not strong enough to cause any phonon softening
or structural distortions.39

Next we systematically investigate the edge electronic struc-
tures of SBB to obtain key essential insights into the physical
origins of e–ph interactions at the edges. Free-standing SBB
has topologically protected edge states (yellow circles in Fig. 2)
inside the bandgap (blue circles). The edge states span over
the whole 1D Brillouin zone (M̅– Γ̄ –M̅) and form an isolated
(from bulk conduction and valence bands, i.e., blue circled
bands) Dirac cone at the zone boundary (M̅). However, these
edge states in SBB nanoribbons with native edges do not
possess a gapless Dirac cone at the zone center as in ideal 2D
TIs.3 For instance, the edge states near Γ̄ of zigzag nanoribbon
(Fig. 2a) are well separated from the adjacent bulk surface
bands, and similar features are found in the armchair nano-
ribbon (Fig. 2b). The band dispersion of these edge states is
nonlinear except in the upper part of the edge states (∼0.2–0.5
eV above Fermi level for zigzag and ∼0.4–0.6 eV above Fermi
level for armchair). These band characteristics result from the
presence of dangling bonds among Bi atoms in the native
edge, and Bi p3/2 states dominantly contribute to these non-
linear band features as shown in the projected density of
states (Fig. 2e and f).

As shown in several previous studies,40–43 we can utilize
hydrogen to passivate the edge Bi atoms to remove the dan-
gling bonds. As can be seen from Fig. 2e and f, the chemical
passivation via hydrogen eliminates the dominance of Bi p3/2
states and localizes the edge states at the zone center (Fig. 2c
and d), making the dispersions similar to that of the edge
states in HgTe/CdTe quantum well.3 Consequently, the edge
states (Fig. 2c and d) of hydrogen passivated edges become
linear compared to those of the native edges. This change will
potentially affect various types of scattering phenomena in the
lattice. It should be noted that the shape of the edge bands in
armchair nanoribbons (Fig. 2b and d) is slightly different com-
pared to that reported in ref. 42 and 43 due to the differences
in the width (see Fig. S2 in ESI†) of the nanoribbons44 and the
lattice parameters used. In our calculations, fully relaxed
lattice parameters are in the range of 7.33–7.43 Å for the
2.3 nm wide armchair nanoribbon, while ref. 42 and 43 used
the fixed value of 7.51 Å for a wider nanoribbon (see
Table S1†). As we considered the energy-dependent electron–
phonon scattering over the whole 1D BZ, these small differ-
ences in band shape as well as the gap do not affect our ana-
lysis of electron–phonon scattering at these edge states. More
details on this can be found in the ESI.†

Now we focus on how e–ph interactions at the edges of SBB
change with temperature and correlate with electronic disper-
sions. Since the passivation can alter the dispersion of the
electronic edge states of SBB, it can also alter the phonon dis-
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persions. Therefore, it is necessary to analyze the phonon dis-
persions of both SBB and its nanoribbons before proceeding
to investigate e–ph interactions. Using density functional per-
turbation theory calculations, we obtained phonon dispersions
for all the cases of SBB nanoribbons considered here. In these

calculations, the acoustic sum with three translational invar-
iances and one rotational invariance along the direction of the
periodicity was applied by using the optimized correction of
the dynamical matrix. We present the phonon dispersions of
1D edges in Fig. 3.

Fig. 2 Edge orientation dependent electronic dispersion showing the bulk and edge contributions in single bilayer Bi(111). (a–d) Edge projected
electronic band structures for zigzag and armchair nanoribbons, unpassivated (a and b) and hydrogen-passivated (c and d). Yellow and blue circles
indicate the contributions from the edge and the bulk, respectively. The dashed lines in each sub-figure indicate the Fermi level. (e and f) Projected
densities of Bi p1/2 and p3/2 states for zigzag and armchair edges. The zigzag and armchair nanoribbons are 3.3 nm and 2.3 nm wide (Fig. S2†),
respectively.
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In the case of zigzag edge, the first three acoustic phonons
are the in-phase vibrational modes (blue curves), while the
fourth acoustic phonon (red curve) is induced due to the
rotational symmetry along the periodic direction of the ribbon.
Three acoustic modes of native, unpassivated zigzag edge are
soft outside Γ̄ (Fig. 3a), which may be attributed to internal
stress along its plane despite the structure being fully
relaxed.45–47 Compared to the unpassivated zigzag edge, the
phonon dispersions of passivated zigzag edge are significantly
modified (see Fig. 3c). In particular, these dispersions do not
contain any soft phonon modes. On the other hand, the

phonon dispersions of armchair edges (Fig. 3b and d) have
two soft modes regardless of the passivation and differ signifi-
cantly compared to zigzag edges, denoting that the lattice
vibrations depend significantly on the edge orientations. The
existence of soft phonon modes in the phonon dispersions
suggests dynamical instability (see ESI† for further details)
near the high symmetry point M̅ of the armchair edges.

We now discuss how the phonon modes interact with the
electronic edge states at different temperatures. As mentioned
earlier, the topological edge states are protected from the back-
scattering induced by the small perturbation, for example, due

Fig. 3 Edge orientation dependent phononic dispersions in single bilayer Bi(111). Phonon dispersions obtained using density functional perturbation
theory calculations for (a) zigzag nanoribbon, (b) armchair nanoribbon, (c) zigzag nanoribbon with H-passivation, and (d) armchair nanoribbon with
H-passivation. The red-colored phonon band is the fourth acoustic mode for the rotational invariance along the periodic direction of the
nanoribbon.
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to the presence of nonmagnetic impurity. In this work, we
assume that the e–ph interactions are the dominant source of
backscattering and charge carrier decay, while neglecting any
thermal expansion, any defects and impurities. Although the
impurity and disorder effects can be significant compared to
e–ph scattering at low temperature (T ≲ 100 K), the e–ph inter-
actions becomes dominant above 100 K over all other effects
even in very high purity samples.48

The e–ph interactions mainly consist of two types: e–ph
scattering and e–ph coupling. Among them, electron–phonon
scattering is a dominant scattering process in metals, insula-
tors, and semiconductors at finite temperatures and can sig-
nificantly affect electronic transport.13 The strength of the elec-
tron–phonon scattering can be characterized by measuring the
carrier’s scattering rate, which is inversely proportional to the
relaxation time. Here we have used an averaging approach to
calculate e–ph scattering using density functional perturbation
theory, which is known to give accurate estimates of the scat-
tering rates at temperatures above Debye temperature.13,49,50

Incidentally, Bismuth has a low Debye temperature (112–114 K
(ref. 51) for 3D and 76–92 K (ref. 52) for 2D) due to its heavier
mass and low sound velocity. We calculated the relaxation
times at the edge states by considering only e–ph scattering, by
numerically solving the equation53,54

τ�1ðε; μ;TÞ ¼ 2πΩ
gsℏ

X
v

g2v ðε; εþ ω̄vÞ½nðω̄v;TÞ
�

þ f ðεþ ω̄v; μ;TÞ�ρðεþ ω̄vÞ þ g2v ðε; ε� ω̄vÞ
� ½nðω̄v;TÞ þ 1� f ðε� ω̄v; μ;TÞ�ρðε� ω̄vÞg:

ð2Þ

Here Ω, ħ, and ω̄v are the primitive unit cell volume, the
reduced Planck’s constant, and the averaged phonon mode
energy, respectively. gv

2, nðω̄v;TÞ, T, f ðεþ ω̄v; μ;TÞ, gs = 2, and ρ

stand for the averaged electron–phonon scattering matrix, the
Bose–Einstein distribution function, the Fermi–Dirac distri-
bution function, the spin degeneracy, the electron energy, and
the electronic density of states (DOS) per unit energy and unit
volume, respectively.

We present calculated e–ph scattering times and electrical
conductivity for SBB as well as the zigzag and armchair nano-
ribbons in the temperature range of 200 K–400 K in Fig. 4. It
should be noted that we explicitly considered the SOC effect in
these calculations. At low temperature (200 K), small thermal
broadening leads to a longer scattering time (inverse of line-
width) in the vicinity of Fermi level (Fig. 4(a–c)) via suppres-
sing optical phonon scattering, as Pauli exclusion principle
does not allow transition into filled electronic states for small
thermal broadening.55–57 Faraway from the Fermi level, the
sharp fall of scattering time (Fig. 4a) indicates the increase in
the available scattering phase space for electronic state tran-
sitions (i.e., the number of available states to be scattered, see
eqn (1)). Also, such change is directly related to the increase of
density of states far away from the surface bandgap (Fig. 1b or
Fig. 2e, f ). However, the linewidths of 2D surface and 1D edge
have a distinct feature in the vicinity of the Fermi level. In par-
ticular, the linewidth of linear edge state in 1D passivated

edges gets much shorter inside the 2D surface bandgap com-
pared to the nonlinear states (native, unpassivated edges) due
to more restricted scattering phase space and lower density of
states (Fig. 2(e and f)).

Increasing temperature to 300 K (or above) for a given
energy, the thermal broadening becomes significant (as the
maximum energy of the optical phonons in SBB is ≈16 meV
(Fig. 1c, or Fig. 3)),58 and the optical phonon scattering comes
into play in the vicinity of Fermi level. This leads to a dramatic
reduction of scattering time of the edge states in all cases
(Fig. 4(b and c)), i.e., a significant increase in e–ph scattering
with temperature despite topological protections of the edge
states. To the best of our knowledge, this is a first clear demon-
stration that e–ph scattering can indeed be a pivotal source of
backscattering in the topological edge states at finite tempera-
tures in a real material, as suggested earlier by quantum
mechanical model developed for hypothetical systems.56,57,59–61

This is further reflected in the calculated electrical conduc-
tivity values (Fig. 4(e and f)), suggesting that such source of
backscattering can lead to a significant energy dissipation
throughout the topological edge states at room temperature.

For a given temperature, we now discuss how electron–
phonon scattering correlates with different type of electronic
bands dispersions. In 2D SBB, the highly dispersive valence
band has low density of states compared to the conduction
bands (Fig. 1(b)). This leads to the longer relaxation time (τ) of
holes than that of electrons, and τ peaks at around 0.25 eV
(Fig. 4a), where the SOC effect induces a hat-like VBM of SBB
(Fig. 1b). In contrast, the relaxation time of unpassivated zigzag
edge (with nonlinear dispersion) is much shorter than that of
SBB below 0.25 eV (Fig. 4b). At the upper regime (∼0.45 eV) of
the edge states of zigzag edge, the relaxation time is approxi-
mately 10 fs at 200 K, which is higher than that at the lower
regime (−0.3 to 0.4 eV) of the edge states. After passivation, the
relaxation time of the edge states increases sharply. The lime-
colored shaded areas in Fig. 4b highlight the energy region for
the linear edge states. The sharp increase in carrier relaxation
time of passivated zigzag edge indicates a dramatic reduction in
e–ph collisions due to linear dispersion. The maximum relax-
ation time of the carriers at linearly dispersed edge states is
over 20 times higher than that of bulk surface carriers, while it
is more than 100 times higher than that of the carriers at the
nonlinearly dispersed edge states. This shows that the e–ph
scattering weakens as the band dispersion becomes linear.

To obtain a broader picture of whether the e–ph scattering
is stronger at nonlinearly dispersed edge states, we also calcu-
lated the relaxation time at the edge states of armchair and
passivated armchair edges, which have two soft acoustic
phonon modes (Fig. 3b) compared to three soft phonon
modes in zigzag edge (Fig. 3a). In the case of armchair edge,
the relaxation time of the carriers at upper regime (∼0.5 eV) of
the edge states is ∼40 fs at 200 K, which is significantly higher
than that at the lower energy regime of the edge states. The
relaxation time rises sharply at the edge states with a peak
∼0.5 eV and falls in the region of the surface carrier’s contri-
butions. In contrast to the native, unpassivated armchair edge,
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the linearly dispersed edge states of passivated armchair edge
lead to much longer relaxation time (Fig. 4c). The maximum
relaxation time (inset figure) of carriers at linearly dispersed
edge states is more than 60 times higher than the relaxation
time of edge carriers at nonlinearly (lower regime ∼0.2 eV) dis-
persed edge. This further confirms that the nonlinearly dis-
persed edge states of pristine SBB lead to a strong e–ph scatter-
ing around 200–400 K, while the e–ph scattering is weaker at
the linearly dispersed states of the passivated SBB edges.

To place the results for e–ph scattering for 2D and 1D SBB
presented in Fig. 4 in a broader context, we compare the calcu-
lated relaxation time of the linearly dispersed edge states of
passivated zigzag and armchair edges of SBB with the available
experimental data for other 2D materials. In the case of passi-
vated SBB zigzag edge, the maximum relaxation time is 1.1 ps
at 200 K, which is similar to the measured relaxation time
1.1 ps at a very low temperature of 1.5 K of the edge states of
HgTe quantum well.62 At these low temperatures, there will be
no significant e–ph scattering at the edge states of HgTe,
leading to such longer relaxation time of 1.1 ps. It is worth
mentioning here that HgTe quantum-well exhibits QSH effect4

and its edge states show an ideal dispersion, i.e., linear dis-
persion.40 Compared to passivated zigzag edge, the maximum
relaxation time of the carriers at the linearly dispersed edge
states of passivated armchair edge is 319 fs at 200 K, which

falls within the range of measured relaxation time for massless
fermions in graphene (250–450 fs (ref. 63)).

We now illustrate how e–ph scattering affects carrier trans-
port by examining the changes in electrical conductivity. Our
results indicate that e–ph scattering is weak at the linearly dis-
persed edge states of passivated zigzag and armchair edges,
which is reflected in their high electrical conductivity (Fig. 4
(d–f )). Even within the negligibly small bandgap of the Dirac
cone of passivated zigzag and armchair edges, their longer
relaxation time results in very high electrical conductivity of
∼105 S m−1, exceeding that of any semiconductors. This
suggests their potential application in low power electronic
devices. For example, n-type (doped) Bi2Te3 has a maximum
value of the electrical conductivity ∼6.9 × 104 S m−1 at 300 K,64

while the silicon and germanium have much lower electrical
conductivity (<103 S m−1).65,66 Moreover, the lower electrical
conductivity of the nonlinearly dispersed edge states indicates
that a significant amount of energy can be dissipated through-
out the edge states of pristine SBB due to e–ph scattering
around 200–400 K. Thus, the enhanced linearity of edge states
in passivated SBB edges plays a significant role in carrier trans-
port, as e–ph scattering becomes weaker for linear band dis-
persions. The e–ph scattering and carrier transport notably
differ in linearly and nonlinearly dispersed edge states
because the linearly dispersed edge states have an ideal Dirac

Fig. 4 Carrier relaxation times and electrical conductivity of 2D and 1D single bilayer Bi(111). (a) Temperature dependent relaxation time of 2D
single bilayer Bi(111) as a function of the chemical potential. (b and c) Relaxation time as a function of chemical potential for different temperatures
for unpassivated and passivated zigzag (b) and armchair (c) edges. The insets show the full-scale relaxation times near the Fermi energy. (d)
Temperature dependent electrical conductivity of 2D single bilayer Bi(111) as a function of the chemical potential. (e and f) Electrical conductivity as
a function of chemical potential for different temperatures for unpassivated and passivated zigzag (e) and armchair (f ) edges. The Fermi level is set
to zero in all cases. The lime-colored shaded area in (b, c and e, f ) indicates the energy region for the linear edge states in the passivated
nanoribbons.
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like dispersions which are fully protected from backscattering
at low temperatures.31 Aforementioned findings are physically
significant because the e–ph scattering induces larger determi-
nistic impact (depending on the linearity and nonlinearity of
the edge states) on the carrier transport around room tempera-
tures, i.e., e–ph scattering significantly reduces electrical con-
ductivity of the topologically protected edge states in SBB.
Overall, these results suggest the importance of e–ph inter-
actions in evaluating carrier transport and for designing ultra-
low energy electronic devices based on a 2D topological insula-
tor. Furthermore, these results also point out that it is impor-
tant to take into account factors such as presence of dangling
bonds and nonlinearities in the edge states, as well as the
magnitude of e–ph interactions in linearly dispersed edges.

As the edge states are conducting, the second type of e–ph
interactions, i.e., e–ph coupling, may also be present at the edge
states. e–ph coupling, which involves the pairing of loosely
bound electrons through phonons, is only present in metallic
states. While the e–ph coupling itself does not badly affect elec-
tronic transport, e–ph scattering can significantly slow down the
carrier transport. As we have shown how e–ph scattering varies
with edge state dispersions, we next investigate how e–ph coup-
ling operates in linearly and nonlinearly dispersed edge states.
Table 1 shows the values of electron–phonon coupling con-
stants for 1D SBB, calculated using density functional pertur-
bation theory including the SOC effect (see ESI† for details).
Here, the finite value of the λ indicates that e–ph coupling exists
at all different types of edge states. In general, the coupling is
stronger in the case native, unpassivated edges with nonlinear
dispersion. The weak e–ph coupling at the linearly dispersed
edge states of passivated zigzag and armchair edges is compar-
able to the e–ph coupling (in the range of 0.076–0.088) at the
linearly dispersed surface states of 3D TI Bi2Se3, which is
regarded one of the weakest e–ph coupling ever measured in
any material.67 As we demonstrated earlier that the e–ph scatter-
ing is negligibly weaker at the linearly dispersed edge states,
this further supports the fact that the e–ph interactions are neg-
ligibly weak at the linearly dispersed edge states compared to
the nonlinearly dispersed edge states of the pristine SBB.

Conclusions

Our study based on first-principles density functional pertur-
bation theory calculations sheds light on the interplay between
charge carriers and phonon dynamics at the edge states in 2D
topological materials. Using the SBB as a representative

example, we show that e–ph scattering can be a significant
source of backscattering at temperatures around 300 K. We
also show that such source backscattering can cause a signifi-
cant charge carrier decay, i.e., energy dissipation at the edge
states. Furthermore, we find that e–ph interactions strongly
depend on the character of electronic edge dispersion, i.e.,
linear, and nonlinear. The e–ph interactions are negligibly
weaker at the linear edge at low temperatures, ensuring long-
lived quasiparticles in the linear edge state for dissipationless
energy transport. Overall, our results quantitatively indicate
that the e–ph interactions can be a pivotal factor in realizing
lossless electronic transport—an ideal behavior dictated by the
electronic band topology of SBB. Our in-depth investigation of
the impact of e–ph interactions in 2D topological insulators
provides invaluable physical insights to future research on
device fabrications and technological developments in the
field of ultralow energy electronics, spotlighting the impor-
tance of many-body physics in practical devices.

Methods

We used the plane wave (PW) pseudopotential method based on
the density functional theory (DFT)68 and density functional per-
turbation theory (DFPT) in Quantum ESPRESSO35,69 to conduct
the electronic structures and electron–phonon calculations. We
adopted the GGA-PBE functional for the exchange–correlation
term.44 We used fully relativistic ultrasoft pseudopotential with
45 Ry cutoff energy for wave functions, 480 Ry cutoff energy for
charge density, 0.035 Ry Gaussian smearing width, 16 × 16 × 1 k-
point mesh, 881 q-points, self-consistency convergence threshold
of 10−7 Ry, phonon convergence threshold of 10−18 Ry, and
potential mixing parameter of 0.2. For electronic structure calcu-
lations, we considered a denser 24 × 24 × 1 k-point mesh. For
nanoribbons, we used the same parameters as above except 12 ×
1 × 1 and 1 × 12 × 1 k-point mesh, and 611 and 161 q-points for
or zigzag and armchair, respectively, along with self-consistency
convergence of 10−10 Ry. We calculated finite-temperature band-
structure by using the approach described in ref. 70. The average
electron–phonon dynamical matrix, carrier lifetime, and electri-
cal conductivity were computed by using EPAMLS54 and
BoltzTraP codes.71 See ESI† for further computational details.
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Table 1 e–ph coupling constants (λ) for the 1D conducting edges of
single bilayer Bi(111)

λ

Zigzag 0.114
Passivated zigzag 0.105
Armchair 0.146
Passivated armchair 0.071
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