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1 NPO1 Numerical Integration

For Numerical Project NP0O1, we will be trying to evaluate

Tr 5
Y (t) = / R(t)dt = / (t + cos (wt)) dt, where w =1 and w = 40,
Tr 0

using computer approximations. For this project I chose to perform my calculations and data
analysis in Numbers from iWork 09, the Mac OS X equivalent of Microsoft Excel. This appli-
cation shares nearly every single function as Excel needed for NP01, and operates analogously
to other spreadsheet applications. I also used Mathematica 9 to check various algebra steps and
sum approximations.

The four approximation methods we will be using are the Left Riemann Sum (LRS), the Right
Riemann Sum (RRS), the Trapezoid Rule (TR), and the Simpson Rule (SR). We will carry out
the calculations using a time stepwidth
Tp —1T1;

K )
where K follows a doubling sequence of values: K = 2, 4, 8, 16, 32, 64, 128, 256, and 512.

h

1.1 Calculations, Error, and Tables

Once calculating the the various timewidths A for all K values, I organized my spreadsheets by
making a column listing integer values of K, a column of ¢ values, a column of R(tx) for w=1,
and a column of R(tx) for w=40. I then wrote four functions to evaluate our integral by the
four methods stated above.

LRS for both values of w simply required summing the R(tj) values from k=0 to k=K — 1 and
multiplying by h. Similarly, RRS required summing the R(#;) values from k=1 to k=K and
multiplying by h.

For TR I summed the R(t;) values from h=1 to k = K — 1, and multiplied by by h. I then

added the sum of the endpoints, R(ty) and R(tx) and multiplied their sum by a pre-factor of
h

R

Finally, for SR I had to add two other columns in order to calculate to the sum of even R(t)

and odd R(tx). Once those were found, I then multiplied by their respective pre-factors, %
and %. I then added the sum of the endpoints, R(ty) and R(tx) and multiplied their sum by

a pre-factor of %

I then calculated the numerical error

AY = ‘Y(K) —Y‘

where Y5 is the approximated value of the integral, and Y is the exact value. Note: when
using K = oo, the numerical integration error should be 0. T left in this calculation to verify
that my formula for calculating the numerical integration error was correct.



I then tabulated all of my data, including K values, stepwidth h, all four approximation method
results Y5) | and the integration error AY for each method into two tables for w=1 and w=40,
respectively titled Table 1.01 and Table 1.02.

h LRS RRS TR AY:LRS AY: RRS AY: TR AY: SR

2 25 7.7414228834 14.868889274 11.305156079 7.6977193082 1.8818042926 5.2456620084 1.6819289029 1.9255078678
4 1.25 8.2260727107 11.789805906 10.007939308 9.5755337182 1.3971544654 2.1665787301 0.3847121324 0.0476934578
8 0.625 8.8265542197 10.608420817 9.7174875185 9.6206702553 0.7966729563 0.9851936414 0.0942603425 0.0025569208
16 0.3125 9.2012099568 10.092143256 9.6466766062 9.6230729688 0.4220172192 0.4689160797 0.0234494302 0.0001542072
32 0.15625 9.4063490435 9.8518156929 9.6290823682 9.6232176222 0.2168781325 0.2285885169 0.0058551922 0.0000095538
64 0.078125 9.5133238648 9.7360571896 9.6246905272 9.6232265802 0.1099033112 0.1128300135 0.0014633512 0.0000005958
128 0.0390625  9.5679096547 9.6792763171 0.6235929859 9.6232271388 0.0553175213 0.0560491411 0.0003658099 0.0000000372
256 0.01953125  9.5954769611 9.6511602923 9.6233186267 9.6232271737 0.0277502149 0.0279331163 0.0000914507 0.0000000023
512 0.009765625 9.6093292058 9.6371708714 9.6232500386 9.6232271759 0.0138979702 0.0139436954 0.0000228626 0.0000000001
® 9.623227176 9.623227176 9.623227176 9.623227176 O 0 0 0

| logh) | log(AY:LRS) [ log(AY: RRS) | log(AY: TR) | log(AY: SR) |
2 0.3979400087 0.2745744549 0.7198003119 0.2258076337 0.2845452975
4 0.096910013 0.1452444231 0.3357744752 -0.414864117 -1.32154119
8 -0.204119983 -0.098719925 -0.0064784  -1.025670986 -2.592282731
16 -0.505149978 -0.374669829 -0.328904875 -1.629867705 -3.811895288
32 -0.806179974 -0.663784235 -0.64094559 -2.232458845 -5.019823181
64 -1.10720097  -0.958989223 -0.94757536  -2.834651435 -6.224891167 Data for Small h for Liner Regression Lines
128 -1.408239965 -1.257137288 -1.251431038 -3.436744564 -7.429247909 | log(AY: LRS) | log(AY: RRS) | log(AY:TR) | log(AY: SR)
256 -1.709269961 -1.55673365 -1.55388061 -4.038812839 -8.633426971 -1.55673365 -1.55388061 -4.038812839 -8.633426971
512 -2.010299957 -1.857048623 -1.855622114 -4.640874902 -9.837557236 -1.857048623 -1.855622114 -4.640874902 -9.837557236

Table 1.02: w=40

h LRS RRS TR SR AY:LRS AY: RRS AY:TR AY: SR

2 25 20217391542 28.871299105 24.544345323 24.84115791 7.7828888394 16.436796402 12.109842621 12.406655208
4 1.25 22599508902 26.926462683 24.762985793 24.835865949 10.1650062  14.491959981 12.32848309  12.401363247
8 0.625 23.735665975 25.899142866 24.81740442 24.835543963 11.301163272 13.464640163 12.382001718 12.40104126
16 0.3125 24.290124861 25.371863307 24.830094084 24.835523972 11.855622158 12.937360604 12.396491381 12.401021269
32 0.15625 24563955953 25.104825176 24.834300564 24.835522724 12.12945325 12.670322473 12.399887862 12.401020022
64 0.078125 12.363933633 12.634368244 12.499150938 8.3874043964 0.07056907  0.1998655413 0.0646482357 4.0470983063
128 0.0390625  12.380795292 12.516012597 12.448403945 12.43148828 0.0537074109 0.0815098948 0.0139012419 0.0030144226
256 0.01953125  12.40406413 12.471672782 12.437868456 12.434356626 0.0304385731 0.0371700797 0.0033657533 0.0001460762
512 0.009765625 12.418435506 12.471672782 12.43533767 12.434494074 0.0160671963 0.0177371302 0.000834967 0.0000086285
® 12478167568 12.478167568 12.478167568 12.478167568 0 0 0 0

| logh)  [log(AY:LRS) | log(AY: RRS) | log(AY: TR) | log(AY: SR) |
2 0.3979400087 0.8911408276 1.2158171757 1.0831384991 1.093654713
4 0.096910013  1.0071076478 1.1611271261 1.0909096438 1.0934694285
8 -0.204119983 1.0531231494 1.1291947516 1.092822426 1.0934581525
16 -0.505149978 1.0739243498 1.1118456834 1.0932987828 1.0934574524
32 -0.806179974 1.083841225 1.1027876683 1.0934177576 1.0934574087
64 -1.10720997  -1.151385606 -0.699262076 -1.189443323 0.6071437538 Data for Small h for Liner Regression Lines
128 -1.408239965 -1.269965783 -1.088789668 -1.856946398 -2.520795856 | log(AY: LRS) | log(AY: RRS) | log(AY: TR) | log(AY: SR)
256 1709269961 -1.51657571 -1.429806507 -2.472917718 -3.835420455 -151657571 -1.429806507 -2.472917718 -3.835420455
512 -2.010299957 -1.794059902 -1.751116647 -3.078330714 -5.064064637 -1.794059902 -1.751116647 -3.078330714 -5.064064637




1.2 Figures

From these tables, I then made two graphs, titled Figure 1.01 for w=1 and Figure 1.02 for w=40,
that plot log (k) vs. log (Y5)). The legend in corner details each approximation method’s shape
representations, along with corresponding colors. The linear regressions’
the next section.

are to be explained in
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1The ”trendline” tool in Numbers '09 only draws a line through the endpoints of the selected data, and since
we only used the smallest two h values to obtain the most accurate slope for each algorithm, Numbers '09 will
draw a line only from these two points (one of the drawbacks Numbers has compared to Excel)!



1.3 Error Theory

According to mathematical theory,

should imply that the error AY decreases asymptotically with the stepwidth h by a power law:
AY = ChP,

where p and C are constants. Based on these theoretical results, we can see why the data
points for a given integrated and approximation method fall on a straight line, y = ax + b for
sufficiently small values of h. Notice that if we were to take the log of both sides of our AY
approximation equation, we could arrive at an equation in the form of a line:

log (AY') = log (Ch?) =log (C) + log (k") = plog (h) + log (C).

From here we can compare this equation to our linear equation to produce the relationships
between slope a, intercept b, and constants p and C"

a=p, b=log(C) where z=Ilog(h), y=Ilog(AY)

1.4 Results

Since all eight data sets from Figures 1.01 and 1.02 have several h values that are small enough
to fall in the limit where the power law from above holds, we can see that K=512 is a sufficient
approximation for these integrands; however, doubling K again would make the error continue
to decrease, therefore generating another data point on our graphs that would, once again, fall
on the linear regression line, since this new K value would have an even smaller h stepwidth
than any h from Table 1.01 or 1.02.

I then applied a linear regression to the two smallest h values from the w=1 integrand, even
though each point fell almost directly on the line (applying the regression to the two smallest h
values will give the most accurate slope a and intercept b). For the w=40 integrand, I applied
a linear regression with the same conditions as w=1, therefore I only used the h’s from K=512
and 256 to generate this line (Note: I only used the smallest two h values for each method
instead of several, since the accuracy is highest for smallest h and biggest K). As stated before,
greater values of K would make the linear regression more accurate; however, I believe K=512
is sufficient to determine the slope and intercept of the lines.

I then extracted the slope a and intercept b from the equations of these linear regressions. Once
these values were obtained, I was then able to estimate p and C' using the relationships as stated
above in 1.3. Once all this new data was collected, I tabulated the results and created Table
1.03 to compare all values of a, b, C, and p for LRS, RRS, TR, and SR, for both w=1 and w=40.

w=1 w=40
Slope: a ‘ Intercept: b ‘ Pre-factor: C ‘ Exponent: p Slope: a ‘ Intercept: b ‘ Pre-factor: C ‘ Exponent: p
log(AY: LRS) |0.9976 0.1485 1.4076672284 0.9976 0.9218 0.0590 1.1455129414 0.9218
log(AY: RRS) |1.0024 0.1594 1.4434442007 1.0024 1.0674 0.3946 2.4808471081 1.0674
log(AY: TR) 2.0000 -0.6203 0.2397176436 2.0000 2.0111 0.9647 9.2193435745 2.0111
log(AY: SR) |4.0000 -1.7963 0.0159845347 4.0000 4.0815 3.1409 1383.2478377 4.0815




1.5 Discussion

It’s worth noting that some Y *) values for LRS, RRS, TR, and SR might be slightly off for
large h and small K; this is an approximation after all. However, we can apply a simple method
to check whether the algorithm approximations LRS, RRS, TR, and SR have decreasing error
by calculating the factor by which the error goes down for each method. As stated in class, we
can find these error decreasing factors by the ratio

V() 2, for LRS and RRS
iy = { 4for TR for K =2 4,8,16,32,64,128 or 256.
16, for SR

This implies that the method with the highest error decreasing factor will give a better approx-
imation of our integral faster than others, and for bigger K. Also, these factors will be closest
to the exact value of 2, 4, and 16 when h is smallest and K is largest. Applying this quick check
for both w=1 and w=40 from Table 1.01 and 1.02 above, we see these factors present, providing
further proof that our calculations are accurate.

When comparing p values for w=1 and w=40, notice that the p values for each approximation
algorithm are very close (almost identical!); the various p’s do not vary greatly since the slope
of each log(AY') vs. h line should be equal, since the same approximation algorithm methods,
LRS, RRS, TR, SR, are being used for both values of w. In contrast, when comparing C' values
for both w=1 and w=40, each corresponding C' is related by log(C)=b, i.e., the bigger b gets
then the bigger C gets. So whereas p was dependent upon the approximation algorithm used,
C' is dependent upon the integrand, specifically the period of our cos(wt) terms. Notice how
the w=40 graph is a ”shifted” graph of the w=1 to the left. Therefore, C values for w=40 will
be bigger than those of w=1, since in the limit as h — 0 and K — oo, lines of the same slope
shifted left will have a higher intercept. Furthermore, we can see that the exact shift of the
w=40 graph compared to the w=1 graph will be log(40), i.e., in general: log(w).

Finally, comparing Figures 1.01 and 1.02, we can see that the w=40 integrand will require
smaller i values to obtain an accurate approximation by simply looking at each graph, Figures
1.01 and 1.02, and noticing that for an accurate approximation, h must fall behind the vertical
line defined at log(%”). Notice all points on Figure 1.01 fall to the left of this vertical line
log (27), but only h values where K'=64 or greater fall to the left of log(%). Qualitatively
speaking, h values must be smaller for w=40 since the graph of the w=40 integrand varies much
more than the w=1 integrand, so the h values need to be small enough to accurately model the
gaps in between each local max and min of the w=40 integrand.



2 NPO02 Numerical ODE Solvers

For Numerical Project NP02, we will be trying to solve the coupled rate equations (ODE system)
for Hy Combustion Model A, posted on one of the UGA KinSolver websites. For this project I
also chose to perform my calculations and data analysis in Numbers from iWork ’09, the Mac
OS X equivalent of Microsoft Excel.

2.1 H, Combustion Model A

I have downloaded all appropriate files from the class website and have read through np_H20.pdf
to familiarize myself with the Hy Combustion Model A.

2.2 ODE Solver Observations and Default Parameters

Similar to 2.1, I have experimented with KS PHYS 3900_H20 website, including changing
the values of the model parameters (initial conditions of the 6 given molecules, forward and
backward reaction rate coefficients ki, ks, k3, k1, k2, and ks, initial and final times 77 and T,
time step number K, and stepwidth Ak), selecting different integration options (E1, E2, and
others), and familiarized myself with the “plot” function, as well as obtaining and importing
data into my spreadsheet software.

We will use this section to state the default parameters for the various solutions to the ODE
system that will be used in the upcoming sections. So let forward and backward coeflicients

ki =ko=ks=1; Kk =ky=Fks=0.0001,

initial time and final times

Ty =0; Tp =10,

number of time steps and stepwidth
K =200000; Ak = 1000,

and integration method to be E1.

2.3 The Ignition Process: The Spark

To study the ignition process, let’s first set all initial parameters to default as given in 2.2, with
the exceptions of [Hs],=6.0, [O2],=3.0, and all other species to 0.0. Notice how the plot of the
ODE solution shows each species as constants for all defined time. This is because for Hy and
O the be able to react, each species needs an appropriate reaction partner. We can see these
two specific species are not compatible by inspecting the Chemical Circuit/Reaction Network
Model for Combustion Model A as shown in class. For Hy to react, it needs some concentration
of O; likewise, for Oy to react it needs some concentration of H. So if no reaction partner is
present for either Ho or O, the two species will simply mix together but not react, i.e., the
initial concentrations will not change with time since no reaction is taking place between the
two species.

Let’s now add a ”spark” to ignite the combustible Ho — Oy mixture. We will run five simulations
using default parameters from 2.2, except where [Hs],=6.0, [02],=3.0, and our spark concen-
tration can be chosen as [H], or [O],. I chose to use [H], for the spark concentration, so for each
of the five simulations, let [H],=1.0 x 10719,1.0 x 1078,1.0 x 107%,1.0 x 10~%, and 1.0 x 10~2.



After running each simulation, I imported the kin.o01.txt file into Numbers 09 and plotted
each [H20)] concentration vs. time ¢, as seen in Figure 2.01 below.

Figure 2.01
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When the spark is added, notice the chemical reaction takes place. All species concentrations
change with time, and eventually the H2O species (as graphed above for each spark concentra-
tion) reaches a maximum concentration. Geometrically, our graphs are nearly identical except
for a shift along the time axis. Also, when the spark concentration changes by increasing factors
of 10, notice that the HoO concentration maximum stays the same for every solution; however,
the time it takes for the HO reaction to occur decreases. So the greater the spark concentration
that is used, the quicker the HoO species will start to to combust, but HoO will always level
out at the same maximum concentration over the same amount of time.

2.4 Explosive Growth

To study the explosive growth of reaction products during ignition of the chemical combustion
taking place, let’s once again set all parameters to default as given in 2.2, with the exceptions
of [Hs],=6.0, [02],=3.0, a spark of [0],=107?, and all other concentrations set to 0.

After running the simulation, I imported the kin.o01.txt file into Numbers 09 and plotted the
[H20)] concentration vs. time ¢t and the [O] concentration vs. time ¢, as seen in Figure 2.02 and
2.03 below.



Figure 2.02
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The H»O vs. time graph starts out with a large positive slope, and becomes linear rather
quickly. The graph stays linear until leveling off at a maximum concentration. In contrast, the
O vs. time graph starts out with a negative slope, but changes sign and becomes linear just
like H2O. Similarly, the O concentration graph also levels out to a maximum concentration.

The approximate linear dependence of the log([H20]) and log([O]) plotted vs. time indicates



that the rate of HyO and the rate of O are exponentially related to time in the differential
equations. We can find a functional dependence of each concentration that represents the
numerical data plotted using a line of best of fit for the “log-linear” phase: y = mx + b.
After finding the slope and intercept of a linear regression line to just the ignition phase of
both Figure 2.02 and 2.03, we can see that the intercept is simply b=log([H20],) or log([O],)

during the ignition phase. The slope of these linear regressions represents the rate at which
Alog(concentration)
At ’

the concentration of H,O and O increases on a logarithmic scale i.e., m =
where “concentration” can be [H20] or [O].

From the reaction network, we can see that some product concentrations will grow exponentially
because of the mathematical structure of the 6 differential equations. If a certain species is used
in a reaction more than that same certain species is produce from a different reaction, then that
species will eventually die out to a 0 concentration. For HoO and O, this is not the case. From
the equations listed in class, we can see that H2O and O (among other spices) are produced
more than they are used as reactants. For example, our O vs. time graph first starts out as a dip
before increasing. If you were to look at 6 differential equations in this system, you would notice
that O is used as a reactant for before it is created as a product; however, multiple reactions
produce O once the combustion system starts, i.e., O is first used to start the combustion but
then created many more times from the other reactions. The concentration of O will decrease,
then increase until a certain species is longer longer present to continue the combustion.

The overall combustion eventually stops because of the lack of Os and Hs. The O2 and Hs
species are used as reactants in the system but never created as a byproduct of any other
reaction, therefore the Oy and Hs concentrations will slowly diminish until there is no more Og
and Hs in the mixture.

2.5 Accuracy of E1 and E2 Algorithms

To study the accuracy and convergence behavior of the E1 and E2 ODE solvers, let the forward
rate coefficients k; = 100.0, k2 = 1.0, and k3 = 1.0; backward rate coefficients k; = 2.0,ky =
0.02, and k3 = 0.02; initial concentrations [Ha], = 12, [0s], = 3,[OH], = 0.001; and initial and
final times 77 = 0 and TF = 4.

I first calculated a high-accuracy solution with the E2 solver with K = 800000 and Ak =
200000 = %. This kin.o01.txt file will contain the values Y;,(7) for 7 = 0,1,2,3, and 4. These
will be the five “checkpoints” for calculation of an average error and corresponding nearly exact
solution values as our exact reference solution in order to evaluate the error at each T-point.

Now let’s study the accuracy of both E1 and E2 for a doubling sequence of time step number K,
similar to NP01, where K = K,,2K,,4K,,8K,,...,512K,, starting from the smallest possible
K, that gives a numerically stable solution. This numerical stable solution will have a small
enough K, to not produce an overflow in the ODE solver, representing a solution that barely
resembles an approximation solution of the ODE system. So let K, = 500; for every doubling
of K,, I also made sure to change Ak = %.

With each K value of the doubling sequence, I ran the E1 ODE solver and downloaded the
kin.o01.txt file generated with K = %, then imported each file into a spreadsheet to analyze
the upcoming calculations. I also ran this same sequence of K values for E2. Once the data was
imported, I created Tables 2.01 and 2.02 to list results for the K values, timewidths h, error of

cach 7 point |V, (1) — Yu(7)|, and total error of E:

1
AY::5Z:




where Yn(K)(’T) is the approximate H>O concentration obtained with E1 or E2, and Y,,(7) is the

high-accuracy solution state above (Note: Table 2.01 and 2.02 and the columns describing the
error at various 7 points is obtained from only the H2O concentration).

Table 2.01: E1

K-Value Numerical K h Error of T=0 | Error of T=1 | Error of T=2 | Error of T=3 | Error of T=4 AY
1*K_0 500 0.008 0.00E+00 4.11E+00 4.28E+00 1.54E+00 1.46E+00 2.28E+00
2*K_0 1000 0.004 0.00E+00 2.08E+00 4.07E+00 8.46E-01 6.20E-01 1.52E+00
4*K_0 2000 0.002 0.00E+00 3.61E-02 1.36E+00 2.00E-01 6.91E-02 3.33E-01
8*K_0 4000 0.001 0.00E+00 4.28E-04 2.09E-02 2.10E-03 1.80E-05 4.69E-03
16*K_0 8000 0.0005 0.00E+00 2.15E-04 1.05E-02 1.05E-03 9.00E-06 2.34E-03
32*K_0 16000 0.00025 0.00E+00 1.08E-04 5.23E-03 5.24E-04 5.00E-06 1.17E-03
64*K_0 32000 0.000125 0.00E+00 5.38E-05 2.62E-03 2.62E-04 2.00E-06 5.87E-04
128*K_0 64000 0.0000625  0.00E+00 2.69E-05 1.31E-03 1.31E-04 1.00E-06 2.93E-04

256*K_0 128000 0.00003125 0.00E+00 1.35E-05 6.54E-04 6.60E-05 0.00E+00 1.47E-04
512*K_0 256000 0.000015625 0.00E+00 6.74E-06 3.27E-04 3.30E-05 0.00E+00 7.33E-05

\ K | K-Value [ logth)y | log(ay)

1*K_0 500 -2.09691001 0.3576 Data for Small h

2*K_0 1000 -2.39794001 0.1829 for Liner Regression Lines

4*K_0 2000 -2.69897 -0.4774 logh) | log(AY)

8*K_0 4000 -3 -2.3293 -3 -2.3293

16*K_0 8000 -3.30103 -2.6299 -3.30103 -2.6299

32*K_0 16000 -3.60205999 -2.9306 -3.60205999 -2.9306

64*K_0 32000 -3.90308999 -3.2317 -3.90308999 -3.2317

128*K_0 64000 -4.204119983 -3.5326 -4.204119983 -3.5326

256*K_0 128000 -4.50514998 -3.8336 -4.50515 -3.8336

512*K_0 256000 -4.80617997 -4.1346 -4.80618 -4.1346

Table 2.02: E2
K-Value Numerical K h Error of T=0 | Error of T=1 | Error of T=2 | Error of T=8 | Error of T=4 AY

1*K_0 500 0.008 0.00E+00 4.18E+00 4.17E+00 1.38E+00 1.32E+00 2.21E+00
2*K_0 1000 0.004 0.00E+00 2.00E+00 4.07E+00 8.49E-01 6.24E-01 1.51E+00
4*K_0 2000 0.002 0.00E+00 1.30E-04 5.49E-03 8.08E-04 2.80E-05 1.29E-03
8*K_0 4000 0.001 0.00E+00 6.30E-07 2.90E-05 6.00E-06 0.00E+00 7.13E-06
16*K_0 8000 0.0005 0.00E+00 1.60E-07 7.00E-06 2.00E-06 0.00E+00 1.83E-06
32*K_0 16000 0.00025 0.00E+00 4.00E-08 2.00E-06 1.00E-06 0.00E+00 6.08E-07
64*K_0 32000 0.000125 0.00E+00 1.00E-08 0.00E+00 0.00E+00 0.00E+00 2.00E-09
128*K_0 64000 0.0000625 0.00E+00 1.00E-08 0.00E+00 0.00E+00 0.00E+00 2.00E-09
256*K_0 128000 0.00003125 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
512*K_0 256000 0.000015625 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
\ K | KVvalue | logh) | logay) |

1*K_0 500 -2.09691001 0.3449

2*K_0 1000 -2.39794001 0.1785

4*K_0 2000 -2.69897 -2.8893

8*K_0 4000 -3 -5.1472

16*K_0 8000 -3.30103 -5.7371 Data for Small h

32*K_0 16000 -3.60205999 -6.2161 for Liner Regression Lines

64*K_0 32000 -3.90308999 -8.6990 log(h) ‘ log(AY)

128*K_0 64000 -4.204119983 -8.6990 -3 -5.1472

256*K_0 128000 -4.50514998 -3.30103 -5.7371

512*K_0 256000 -4.80617997 -3.60206 -6.2161
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Once I made these tables, I generated Figure 2.04 by plotting log(AY') vs. time ¢ for both E1
and E2, using different symbols and colors to distinguish E1 from E2.

Figure 2.04
O log(AY): E1
O log(AY): E2
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log(h)

Analogous from NPO1, the error AY is again predicted by mathematical theory to follow a
power law as h — 0. We can use the same derivation as in 1.3 to arrive at the same relationship
between AY 2 ChP and our linear regressions?, given by:

a=p, b=log(C) where x=1log(h), y=Ilog(AY)

Similar to NPO1, I calculated each p and C' value and created Table 2.03 to compare the values
between each algorithm E1 and E2.

Table 2.03

Slope: a Intercept: b Pre-factor: C | Exponent: p
E1 0.9996 0.6698 4.6751979088 0.9996
E2 1.7755 0.1608 1.4481048231 1.7755

Some Observations: First notice that the slope a of E2 is greater than the slope of El.
Similar to NP01 where the largest positive slope represented the most accurate approximation
algorithm used, we can see that E2 is a more accurate integration method used when compared
to E1, since 1.7755 > 0.9996. This slope comes from comparing AY values from Table 2.01 and
Table 2.02. We can see that error approaches 0 much faster in the E2 method rather than the
E1 method, which is why the slope is steeper in Figure 2.04, since the same time width A is
being used for each approximation.

Also notice that the error AY in the E2 method for K = 256K, (and larger K) is 0. So if
the error is 0, then the log of the error log(AY') = log(0) = —oo, which is undefined on Figure

2The ”trendline” tool in Numbers ’09 only draws a line through the endpoints of the selected data, and since
we only used the smallest two h values to obtain the most accurate slope for each algorithm, Numbers '09 will
draw a line only from these two points (one of the few drawbacks Numbers has compared to Excel)!
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2.04 (hence absence of the last two data points for the E2 linear regression). This is most likely
caused by the rounding of the concentrations of various species given from the kin.o01.txt files.

Under further inspection, I noticed that these numbers given in the kin.o01.txt files only carried
decimals out 6 places. If the equation solver were to carry decimals farther out instead of
rounding at 6, then our errors for each method E1 and E2 would have more nonzero answers,
resulting in a better defined linear regression.
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