
Image Compression via PCA.
Numerical Linear Algebra Final Project
MATH 4510 
Fred Hohman

Prompt.
The goal of this notebook is to compress arbitrary grayscale images using numerical linear algebra 
techniques to obtain the most visually appealing compressed image. We will be comparing the effective-
ness of our program by comparing an image to its accompanying 50%, 90%, and 99% compressed 
version. The two methods to compress an image discussed in class were Principal Component Analysis 
(PCA) and Linear Gradient method. While both have their appropriate uses, this notebook will be imple-
menting PCA as I find it more scientific and less “guess-and-check-like.” Upon reading notes on both 
methods, PCA takes a realistic approach to compression matrix generation by gathering real images to 
use as data and attempts to find an underlying structure that is common amongst all pictures. The 
following write-up will provide code and commentary into the workings of my implementation of PCA.

Notes:
1. Knowing in advanced that our compression algorithms would be used on pictures of animals, the 
training set I have compiled contains mostly animals.
2. This notebook will only evaluate if the Import images function is pointed at the correct file path of the 
training set. By default, the notebook will have a file path specific to my machine. To run this code on 
your own machine, simply change the path below to the downloaded (or another) training set. 

We will use this picture of the Mac OS X Lion below as an example towards the end of the notebook.
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LionImage =

Principal Component Analysis (PCA).
PCA is a statistical method that uses orthogonal transformations to turn a potentially correlated set of 
data into a linearly uncorrelated set of data which contain principal components. The number of princi-
pal components will be less than or equal to the total number of variables in the original dataset. Further-
more, the principal components are sorted in a way so that the first component contains the largest 
possible variance in the data, and each succeeding component has the next highest variance.

We can use the ideas presented in PCA to compress an image. Since animal pictures are not noise and 
randomly colored pixels, it is not unreasonable to think that there should be some underlying structure. 
In other words, if given a pure white pixel in an image, the chances that the surrounding pixels will be 
white or some variant of white is probably high. Most images do not contain sharp white to black transi-
tions (except edges!).

To compress an image, we want to remove superfluous pixels and replace them with other colors that 
are already being used by the image. However, we want to do this in a way that can eliminate pixels 
while maintaining image quality. So we are finding a subspace of our original image that is lower dimen-
sional but still accurately represents the data. To compress any image, we will need to find a “basis” 
that contains every combination of pixels of every animal picture so that we can accurately reconstruct 
arbitrary images. Of course, we cannot find a basis that can represent every picture, so we will want to 
gather a large enough dataset that can represent our unobtainable dataset. Our approach to PCA will 
consider an initial dataset of 144 pictures. Each picture will be sliced in 32x32 blocks of pixels, where 
each block denotes a 1024-vector in  R1024.

We will be compressing pictures by 50%, 90%, and 99%. Each percentage will have an accompanying 
matrix that represents the basis for each compression. 

In summary, we want to find a basis for animal pictures to better compress arbitrary images. We will do 
this by gathering sample images that attempt to represent every picture of an animal so that our com-
pression algorithm can recreate the given image. So the natural question is: if we add more pictures to 
our training set does that imply a better compression?
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PCA is a statistical method that uses orthogonal transformations to turn a potentially correlated set of 
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are already being used by the image. However, we want to do this in a way that can eliminate pixels 
while maintaining image quality. So we are finding a subspace of our original image that is lower dimen-
sional but still accurately represents the data. To compress any image, we will need to find a “basis” 
that contains every combination of pixels of every animal picture so that we can accurately reconstruct 
arbitrary images. Of course, we cannot find a basis that can represent every picture, so we will want to 
gather a large enough dataset that can represent our unobtainable dataset. Our approach to PCA will 
consider an initial dataset of 144 pictures. Each picture will be sliced in 32x32 blocks of pixels, where 
each block denotes a 1024-vector in  R1024.

We will be compressing pictures by 50%, 90%, and 99%. Each percentage will have an accompanying 
matrix that represents the basis for each compression. 

In summary, we want to find a basis for animal pictures to better compress arbitrary images. We will do 
this by gathering sample images that attempt to represent every picture of an animal so that our com-
pression algorithm can recreate the given image. So the natural question is: if we add more pictures to 
our training set does that imply a better compression?

Automating the Training Set.
To implement PCA, I have created a training set of animal images that we will use as our original data. 
To convert these images to black and white, I followed an OS X Automator tutorial and made a program 
that batch converts images from an iPhoto photo album to an appropriate training set directory. This 
makes adding more images to the training set quick and easy. The work flow can be seen below.

Image Manipulation Code.
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Image Manipulation Code.
The following functions will be used throughout the notebook to convert our images into Mathematica 
vectors.

Image to Data. 
These functions take in an image, slices it into 32x32 blocks, Zero Means the vectors, and adjusts the 
contrast so that the entry values range from 0 to 1. Note the addition that I included into the ContrastAd-
just function. When applying ImageToData to my training set I was getting divide by 0 errors over pure 
black blocks. The included “If” statement accounts for this by throwing out division values that are less 
that 0.001.

ImageToRawVectors@Img_D := Flatten@Map@@@1DD &,
Map@ImageData, ImagePartition@Img, 32D, 82<D, 84<D, 881<, 82<, 83, 4<<D;

ZeroMean@v_D := 8Mean@vD, v - Mean@vD<;
ContrastAdjust@8m_, v_<D :=8m, Max@Abs@vDD, H1 ê If@Max@Abs@vDD < 0.001, 1, Max@Abs@vDDDL v<;
Preprocess@v_D := ContrastAdjust@ZeroMean@vDD;
ImageToData@Img_D := 8@@ ;; , ;; , 1 ;; 2DD, @@ ;; , ;; , 3DD< &@

Map@Preprocess, ImageToRawVectors@ImgD, 82<DD;
Data to Image.
These functions undo the previous functions by ReMeaning the data, decontrasting, and converting the 
new vectors into an image.

ReMean@8m_, v_<D := H + mL & êû v;
DeContrast@8m_, l_, v_<D := 8m, l v<;
Postprocess@8AuxData_, Vectors_<D := Map@ReMean, Map@DeContrast,

Map@8@@1DD, @@2DD, @@3 ;;DD< &, Join@AuxData, Vectors, 3D, 82<D, 82<D, 82<D;
DataToImage@8AuxData_, Vectors_<D := ImageAssemble@

Map@Image, Map@Partition@, 32D &, Postprocess@8AuxData, Vectors<D, 82<D, 82<DD
Compression.
This function will take an arbitrary picture’s vectors, and apply one our compression matrices to obtain 
new compressed vectors.

CompressImage@A_, Vectors_D := Module@8APlus<,
APlus = PseudoInverse@AD;
Map@Flatten@APlus.Transpose@8<DD &, Vectors, 82<DD;

Decompression.
This function will take our compressed vectors and reconstruct the image.

DecompressImage@A_, CompressedVectors_D :=
Map@Flatten@A.Transpose@8<DD &, CompressedVectors, 82<D;

Implementation.
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Implementation.
To start, let’s first import our training set. 
Note: if you wish to run this code you will need to change the file path to the Training Set directory titled 
“Converted Photos.”
To see how many images we have, we can check the length of ImageSet.

Images = FileNames@"*.png", "êUsersêfredhohmanêDropboxêSpring
2014êMATH 4510êFinal ProjectêConverted Photos"D;

ImageSet = Import@D & êû Images;
Length@ImageSetD
144

We now have a list of images titled ImageSet that we can call at any time. 
We now want to convert every image into it’s auxiliary data and vectors. To do this, we will Map Image-
ToData onto every image.
Warning: this cell will take a non-trivial amount of time to finish evaluating (no more than a couple of 
minutes).

ImageSetData = Map@ImageToData, ImageSetD;
Let’s do some checks. We know we can call one picture’s data by taking the k’th part of our ImageSet-
Data where k is an Integer with 1 £ k £ Length[ImageSetData]. So let’s take the first part of ImageSet-
Data, and then take the second part so we are ignoring the auxiliary data and only considering the raw 
vectors of the image.

Dimensions@ImageSetData@@1, 2DDD
810, 15, 1024<
Notice that this specific picture has been broken up in 10*15=150 32x32 blocks of pixels, i.e., it’s a 
10x15 matrix of 1024-vectors.
Now let’s flatten this matrix and all the other pictures and stack all the vectors into a new matrix. This 
will be a matrix that consists of all the 1024-vectors of our entire training set stacked on top of each 
other. Call this matrix M. We already know that this matrix will have 1024 columns, as each vector has 
the same length. The number of rows will be determined by how many pictures (and resolution) we 
include in our training set.

M = Flatten@ImageSetData@@All, 2DD, 2D;
Dimensions@MD
838431, 1024<
As you can see, the size of our matrix is quite large. To get a feel for the size of the matrix as well as it’s 
vales, let’s have Mathematica take a MatrixPlot.
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MatrixPlot@MD
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Now we can create our cross-correlation matrix for our data by dotting the columns of the total dataset 
together. Let’s also check the size of this new matrix.

CorrelationMatrix = Transpose@MD.M;
Dimensions@%D
81024, 1024<
Now we can take the singular value decomposition of our matrix to find our desired basis.
Bonus: since our matrix is square, it’s singular values will also be its eigenvalues!

8U, S, V< = SingularValueDecomposition@CorrelationMatrixD;
As another check, we can inspect S to make sure it is diagonal.
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MatrixPlot@SD
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If we were to perform a whitening transformation on our basis vectors in U we would be rotating our 
data into a new space of principal components by dividing each vector in U by it’s corresponding singu-
lar value. We could drop a desired amount of singular values (512, 1024-102, or 1024-10) by the follow-
ing code (only considering the 512 example):

DiagonalS = Drop@Diagonal@SD, 512D;
MatrixPlot@DiagonalMatrix@DiagonalSDD
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This whitening transformation is typically used as a preprocess step before applying more advanced 
image compression algorithms such as Independent Component Analysis (ICA); however, this note-
book will only consider techniques used in PCA.

Now that we know S is diagonal, we can ListPlot the sorted singular values.
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This whitening transformation is typically used as a preprocess step before applying more advanced 
image compression algorithms such as Independent Component Analysis (ICA); however, this note-
book will only consider techniques used in PCA.

Now that we know S is diagonal, we can ListPlot the sorted singular values.

ListPlot@Diagonal@SD, ImageSize Æ LargeD
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Just as we would expect, the singular values of S are sorted from largest to smallest, as seen by the 
decaying trend of our ListPlot. Ideally, we want this plot to be steeper, that is, we want as many of our 
singular values as possible to be towards the left side of our graph so that when we use higher compres-
sion percentages we are not losing significant singular values.

Now it is time to create our three compression matrices. We will make them by pulling the first i’th 
column vectors of U where i= 512, 102, or 10 (depending on compression percentage). This will give us 
a new basis for every compression matrix. 

50% compression (512 1024-vectors).

A50Working = Transpose@UD;
A50Working = Drop@A50Working, -H1024 - 512LD;
Hohman50 = Transpose@A50WorkingD;
Dimensions@Hohman50D
81024, 512<
90% compression (102 1024-vectors).

A90Working = Transpose@UD;
A90Working = Drop@A90Working, -H1024 - 102LD;
Hohman90 = Transpose@A90WorkingD;
Dimensions@Hohman90D
81024, 102<
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99% compression (10 1024-vectors).

A99Working = Transpose@UD;
A99Working = Drop@A99Working, -H1024 - 10LD;
Hohman99 = Transpose@A99WorkingD;
Dimensions@Hohman99D
81024, 10<
Now we can compress our image by solving the various least squares problems by using the functions 
defined above. The following code will compare all three compression percentages against the original 
picture. 
Note: this works for images that are only in the training set. 

CompressedTrainingImageVectors takes one of the pictures from the initial training set and one of the 
specified compression matrices and applies the compression to the raw vectors.

CompressedTrainingImageVectors@TrainingImageNumber_, CompressionMatrix_D :=
CompressImage@CompressionMatrix, ImageSetData@@TrainingImageNumber, 2DDD;

DecompressedTrainingImageVectors follows similarly by decompressing the raw vectors.

DecompressedTrainingImageVectors@TrainingImageNumber_, CompressionMatrix_D :=
DecompressImage@CompressionMatrix,
CompressedTrainingImageVectors@TrainingImageNumber, CompressionMatrixDD;

CompressedImage takes the new vectors and constructs an image from them by using DataToImage.

CompressedImage@TrainingImageNumber_, CompressionMatrix_D :=
DataToImage@8ImageSetData@@TrainingImageNumber, 1DD,

DecompressedTrainingImageVectors@TrainingImageNumber, CompressionMatrixD<D
The following function formats the output appropriately to view all 4 images in a 2x2 grid.

TrainingImageComparisonAll@TrainingImageNumber_D :=
Grid@88Grid@88"Original"<, 8Show@ImageSet@@TrainingImageNumberDD, ImageSize Æ 300D<<D,

Grid@88"50% Compression"<,8Show@CompressedImage@TrainingImageNumber, Hohman50D, ImageSize Æ 300D<<D<,
8Grid@88"90% Compression"<,8Show@CompressedImage@TrainingImageNumber, Hohman90D, ImageSize Æ 300D<<D,
Grid@88"99% Compression"<, 8Show@CompressedImage@

TrainingImageNumber, Hohman99D, ImageSize Æ 300D<<D<<, Alignment Æ
TopD

So we can now run TrainingImageComparisonAll. It’s input is one number that corresponds to the 
placement of an image in our training set.

If you decide to download my training set (or use your own) this line of code below is a great way to 
compare the effectiveness of the various compressions.
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TrainingImageComparisonAll@1D
Original 50% Compression

90% Compression 99% Compression

As a final test, we can apply our compression to an image that is outside of our training set—the lion 
picture defined above. The function below uses the same process of compressing pictures and display-
ing them in a 2x2 grid.
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ImageComparison@Image_D :=
Module@8ImageAuxData, ImageVectors, CompressedImageVectors50,

CompressedImageVectors90, CompressedImageVectors99, DecompressedImageVectors50,
DecompressedImageVectors90, DecompressedImageVectors99<,8ImageAuxData, ImageVectors< = ImageToData@ImageD;

CompressedImageVectors50 = CompressImage@Hohman50, ImageVectorsD;
CompressedImageVectors90 = CompressImage@Hohman90, ImageVectorsD;
CompressedImageVectors99 = CompressImage@Hohman99, ImageVectorsD;
DecompressedImageVectors50 =
DecompressImage@Hohman50, CompressedImageVectors50D;

DecompressedImageVectors90 = DecompressImage@
Hohman90, CompressedImageVectors90D;

DecompressedImageVectors99 = DecompressImage@Hohman99,
CompressedImageVectors99D;

Grid@88Grid@88"Original"<, 8Show@Image, ImageSize Æ 300D<<D,
Grid@88"50% Compression"<, 8Show@DataToImage@8ImageAuxData, DecompressedImageVectors50<D, ImageSize Æ 300D<<D<,

8Grid@88"90% Compression"<, 8Show@DataToImage@8ImageAuxData, DecompressedImageVectors90<D, ImageSize Æ 300D<<D,
Grid@88"99% Compression"<, 8Show@DataToImage@8ImageAuxData,

DecompressedImageVectors99<D, ImageSize Æ 300D<<D<<, Alignment Æ TopDD
To use this function, simply pass it an image and evaluate.
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ImageComparison@LionImageD
Original 50% Compression

90% Compression 99% Compression

Results and Final Thoughts.
As we can see from the examples above, the 50% compression matrix does a great job at removing 
unneeded pixels and reconstructing an approximate image. The 90% matrix has a basis that has signifi-
cant corresponding singular values left out, so digital noise starts to creep into the image; however, the 
picture’s subject is easily discernible. Finally, the 99% compressed matrix distorts the image since it 
lacks many significant singular values. Furthermore, the 32x32 block structure becomes apparent in this 
compression percentage. In the lion example we can still discern what the image’s subject is, but it’s 
unclear if every picture will have a visible structure such as the one above.

So recall our question from above: if we add more pictures to our training set does that imply a better 
compression?
When I began the project, I started using a training set of a dozen pictures. Once my code was running I 
began to search the Internet for pre-generated animal training sets. I found relevant pictures from two 
sources: Institute of Science and Technology of Austria and USC Image Database. After sifting through 
these image sets I picked a range of images that included high depth of field, rounded objects, sharp 
edges, and busy backgrounds. As a final addition to the training set, I surveyed some friends and asked 
them the somewhat disturbing question “What animal represents an average of all other animals? As in, 
what animal contains physical characteristics as most other animals.” I was met with some interesting 
results. If you dig through my training set, I included pictures of raccoons, deer, and coatis (an interest-
ing animal). If I could add pictures of the most common animal, maybe I could converge to a better 
basis faster than adding hundreds of more pictures. 

After importing all the images and running my code again, my compressed images became much 
better. In fact, my compressed images became better after every new addition. The TrainingImageCom-
parison function made it easy to explore the various images used inside the training set. So yes, adding 
more pictures in our training set does give better compression results; however, it is unclear which 
characteristic of the data is more beneficial: quality or quantity. I will leave this question open as a final 
thought to the reader!
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Matrix Submissions.
The most significant component of this project is the formation of the compressing matrices that solve 
the least squares problem. Before we export them, let’s run each of the three matrices through a Mathe-
matica MatrixPlot to see their overall structure as a visual aid.

Grid@88Grid@88"Hohman50"<, 8Show@MatrixPlot@Hohman50DD<<D,
Grid@88"Hohman90"<, 8Show@MatrixPlot@Hohman90DD<<D,
Grid@88"Hohman99"<, 8Show@MatrixPlot@Hohman99DD<<D<<, Alignment Æ TopD

Hohman50
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Hohman90
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Hohman99
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1

500

1024

12345678910
1

500

1024

We can now export each matrix as a .dat file.

Export@NotebookDirectory@D <> "Hohman50.dat", Hohman50D
Export@NotebookDirectory@D <> "Hohman90.dat", Hohman90D
Export@NotebookDirectory@D <> "Hohman99.dat", Hohman99D
êUsersêfredhohmanêDropboxêSpring 2014êMATH 4510êFinal ProjectêHohman50.dat
êUsersêfredhohmanêDropboxêSpring 2014êMATH 4510êFinal ProjectêHohman90.dat
êUsersêfredhohmanêDropboxêSpring 2014êMATH 4510êFinal ProjectêHohman99.dat
To ensure that the export was successful we can import the matrices, inspect their dimensions, and 
compare their 9 top-left most elements as a quick visual/numerical check since each matrix should have 
the same elements in this 3x3 block.

Hohman50.
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To ensure that the export was successful we can import the matrices, inspect their dimensions, and 
compare their 9 top-left most elements as a quick visual/numerical check since each matrix should have 
the same elements in this 3x3 block.

Hohman50.

ImportedHohman50 = Import@NotebookDirectory@D <> "Hohman50.dat"D;
Dimensions@ImportedHohman50D
ImportedHohman50@@1 ;; 3, 1 ;; 3DD êê MatrixForm
Hohman50@@1 ;; 3, 1 ;; 3DD êê MatrixForm

81024, 512<
-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929

-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929

Hohman90.

ImportedHohman90 = Import@NotebookDirectory@D <> "Hohman90.dat"D;
Dimensions@ImportedHohman90D
ImportedHohman90@@1 ;; 3, 1 ;; 3DD êê MatrixForm
Hohman90@@1 ;; 3, 1 ;; 3DD êê MatrixForm

81024, 102<
-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929

-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929

Hohman99.

ImportedHohman99 = Import@NotebookDirectory@D <> "Hohman99.dat"D;
Dimensions@ImportedHohman99D
ImportedHohman99@@1 ;; 3, 1 ;; 3DD êê MatrixForm
Hohman99@@1 ;; 3, 1 ;; 3DD êê MatrixForm

81024, 10<
-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929

-0.0389501 -0.0353258 -0.0452956
-0.0396714 -0.0349181 -0.0458001
-0.0405226 -0.0337179 -0.0461929
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